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Abstract: Post-processing scheme using linear feedback shift registers (LFSRs) for generat-
ing chaos-based random bit sequences with infinite period for use in Monte-Carlo methods is
discussed. We theoretically analyze auto-correlation functions of choatic binary sequences gen-
erated by the Bernoulli chaotic map and a class of binary funcitons. The theoretical analyses
can be applied to the LFSR-based post-processing for generating random bit sequences with
prescribed auto-correlations because LFSRs can be regarded as a finite bit approximation of
the Bernoulli map. Some results of numerical experiments are also given.
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1. Introduction
Monte-Carlo methods are used to solve many numerical problems in science and engineering [1]. In
Monte-Carlo method, random numbers with very long period, preferably with infinite period such
as physical random numbers, are required to enhance the accuracy. Usually, a truly random binary
(or M-ary) number should be a sequence of independent and identically distributed (i.i.d.) random
variables with a uniform probability density. Its typical model, for example, is a sequence obtained by
trials of fair coin tossing or dice throwing. Such randomness is very important for random numbers,
especially in their cryptographic applications. However, not only uncorrelated random sequences
but also correlated ones are useful in Monte-Carlo simulations [1, 2], for simulating various kinds of
stochastic phenomena.

Chaos can be a good candidate of a random number generator for Monte Carlo methods because
some of chaotic systems can be theoretically analyzed [3, 4] and we can theoretically design truly
random (uncorrelated) sequences [5, 6] and correlated ones [2, 7] using one-dimensional (1-D) discrete-
time chaotic systems. For example, the convergence rate of Monte-Carlo simulations can be increased
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by using chaotic sequences with proper auto-correlations, which is called super-efficient chaotic Monte-
Carlo simulations [2].

In order to generate chaotic sequences with infinite period for applications to Monte-Carlo methods,
we should realize the chaotic systems by analog circuits because digital circuits generate only (eventu-
ally) periodic sequences. However, it is difficult for analog circuits to generate chaotic sequences with
designed (prescribed) statistical properties due to non-idealities of analog circuit elements and in-
evitable noise [3, 6]. Therefore, several post-processing methods to improve their statistical properties
have been proposed [8–12].

In [9], a random number generator using an aperiodic random bit generator and a linear feedback
shift register (LFSR) was proposed for generating balanced and uncorrelated random bit sequences,
where LFSRs are considered to approximate the Bernoulli chaotic map with finite bits. It was shown
that the balance property of the output bit sequences is good in spite of the imbalance property of the
original (input) bit sequences. Regarding to the auto-correlation property, the output bit sequence is
almost uncorrelated when the length of LFSRs is large although the original aperiodic bit sequence
is positively/negatively correlated.

In [10], another combinational logic circuit with 3-input/1-output is added to the generator given
in [9] for generating random bit sequences with prescribed positive/negative auto-correlations, where
the combinational logic circuits are also designed based on the chaos theory for the Bernoulli map.
The 3-input/1-output combinational logic circuits were derived from the binary functions defined on
the real-valued interval [0, 1] divided into 8 subintervals [ j

8 , j+1
8 ] (j = 0, 1, · · · , 7).

In this paper, we generalize the post-processing method given in [10] for generating aperiodic random
bit sequences with more various kinds of positive/negative auto-correlations. First, we investigate the
theoretical auto-correlation functions of chaotic binary sequences generated by the Bernoulli map,
where the binary functions are defined on the real-valued interval [0, 1] divided into 2m subintervals
[ j
2m , j+1

2m ] (j = 0, 1, · · · , 2m − 1). We give some examples of binary functions for m = 4 which generate
binary sequences with different auto-correlation functions.

Next, we design 4-input/1-output combinational logic circuits based on the above binary functions
for m = 4 and apply them to the post-processing with LFSRs for geneating random bit sequences with
the theoretical (target) auto-correlation properties. Several numerical experiments are performed for
confirming the validity of our new post-processing circuits.

The rest of this paper is organized as follows. In Section 2, we give statistical analysis of 1-D chaos
including generating the chaotic binary sequences by using the Bernoulli map and also describe the
evaluation of correlation functions with Perron-Frobenius (PF) operator. In Section 3, we perform
some numerical experiments for the proposed post-processing method. Finally, Section 4 gives the
conclusions.

2. Chaotic binary sequences generated by bernoulli map
Using a 1-D nonlinear difference equation defined by

xn+1 = τ(xn), xn ∈ I = [0, 1], n = 0, 1, 2, ... (1)

where xn = τn(x) (τn is the n-th iterate of the map and x0 = x is an initial value), we can generate
a chaotic real-valued sequence {τn(x)}∞n=0. We transform such a real-valued sequence into a binary
sequence {B(xn)}∞n=0 using a binary function B(x)(∈ {0, 1}). Then, the theoretical auto-correlation
function of such a binary sequence {B(xn)}∞n=0 is defined by

〈C(l; B)〉 =
∫

I

(B(x) − 〈B〉)(B(τ l(x)) − 〈B〉)f∗(x)dx, (2)

under the assumption that τ(x) has an invariant density function f∗(x), where 〈B〉 denotes the
expectation of the binary sequence {B(xn)}∞n=0 defined by

〈B〉 =
∫

I

B(x)f∗(x)dx. (3)
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Now, we define the Perron-Frobenius (PF) operator Pτ of the map τ with an interval I = [0, 1] by
[4]

Pτf(x) =
d

dx

∫
τ−1([0,x])

f(u)du, (4)

which can also be written as

Pτf(x) =
Nτ∑
i=1

|g′i(x)|f(gi(x)), (5)

where gi(x) is counter image of x. The theoretical auto-correlation function with PF operator for a
binary sequence {B(xn)}∞n=0 can be expressed by

〈C(l; B)〉 =
∫

I

P l
τ{(B(x) − 〈B〉)f∗(x)}(B(x) − 〈B〉)dx. (6)

Through this paper, we use the Bernoulli map τB(x) defined by

τB(x) =
{

2x (0 ≤ x < 1
2)

2x − 1 (1
2 ≤ x ≤ 1),

(7)

which has the real-valued interval I = [0, 1] and the uniform invariant density f∗(x) = 1.
Next, a threshold function with a threshold t is defined by

Θt(x) =
{

0 (x < t)
1 (x ≥ t).

(8)

Using the threshold functions, we define binary functions by

B
(m)
i (x) =

2m−1∑
j=0

c
(i)
j · Θ j

2m
(x) (i = 1, 2, · · · , 22m

), (9)

where c
(i)
j ∈ {−1, 0, 1}.

We theoretically evaluate the auto-correlation functions of {B(m)
i (xn)}∞n=0 generated by the Bernoulli

map with the help of PF operator. For general piecewise linear onto maps with f∗(x) = 1, we can
get [7]

Pτ{(Θt(x) − 〈Θt〉)} =
1
ar

(Θτ(t)(x) − 〈Θτ(t)〉), (10)

which also gives

P l
τ{(Θt(x) − 〈Θt〉)} =

1
al

r

(Θτ l(t)(x) − 〈Θτ l(t)〉), (11)

where ar is a slope of the map in the subinterval in which the threshold t exists. For the Bernoulli
map, we have

PτB
{(Θt(x) − 〈Θt〉)} =

1
2
(ΘτB(t)(x) − 〈ΘτB(t)〉), (12)

and
P l

τB
{(Θt(x) − 〈Θt〉)} =

1
2l

(Θτ l
B(t)(x) − 〈Θτ l

B(t)〉). (13)

For the binary function B
(m)
i (x) of Eq. (9), we have

P l
τB

{(B(m)
i (x) − 〈B(m)

i 〉)} =
1
2l

2m−1∑
j=0

c
(i)
j (Θτ l

B( j
2m )(x) − 〈Θτ l

B( j
2m )〉), (14)

which leads us to get

〈C(l; B(m)
i )〉 =

1
2l

2m−1∑
j=0

c
(i)
j

∫
I

(Θτ l
B( j

2m )(x) − 〈Θτ l
B( j

2m )〉)(B(m)
i (x) − 〈B(m)

i 〉)dx. (15)
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Table I. Values of c
(i)
j in Eq. (9).

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

c
(1)
j 0 0 1 0 −1 1 −1 0 1 −1 1 0 0 −1 0 1

c
(2)
j 1 0 0 −1 0 1 −1 0 1 0 0 0 −1 0 0 0

c
(3)
j 1 −1 1 0 −1 0 0 0 1 0 0 0 −1 0 1 −1

c
(4)
j 1 0 0 0 0 −1 0 0 1 0 0 −1 0 0 0 0

c
(5)
j 0 1 −1 1 0 0 −1 1 −1 0 0 0 1 0 −1 1

c
(6)
j 0 0 0 0 0 0 1 0 −1 1 −1 1 0 0 0 0

Table II. Normalized auto-correlation values εl (l = 1, 2, 3) for B
(4)
i (x).

ε1 ε2 ε3

B1 −1/4 1/16 0
B2 1/4 1/16 0
B3 −1/2 1/4 −1/16
B4 1/2 1/4 1/16
B5 −1/2 3/8 −1/8
B6 1/2 1/4 1/8

Furthermore, noting that τ l
B( j

2m ) = 0 for (l ≥ m), we obtain

P l
τB

(B(m)
i (x) − 〈B(m)

i 〉) =
1
2l

2m−1∑
j=0

c
(i)
j (Θ0(x) − 〈Θ0〉) = 0, (l ≥ m), (16)

which gives
〈C(l; B(m)

i )〉 = 0, (l ≥ m). (17)

Thus, the normalized theoretical auto-correlation functions for all the binary functions B
(m)
i (x)

(i = 1, 2, · · · , 22m

) are given by

Ĉ(l; B(m)
i ) =

〈C(l; B(m)
i )〉

〈C(0;B(m)
i )〉

=

⎧⎪⎨
⎪⎩

1 (l = 0)
εl (l = 1, 2, · · · ,m − 1)
0 (l ≥ m).

(18)

For m ≤ 3, there exists only a small number of binary functions, that is, only a small number of
auto-correlation functions can be obtained. To find more different binary functions and more kinds of
auto-correlation functions, we consider the case m = 4 in this paper. For m = 4, the binary functions
B

(4)
i (x) (i = 1, 2, · · · , 216) will be possible. Here, we consider six binary functions B

(4)
1 (x), B

(4)
2 (x),

B
(4)
3 (x), B

(4)
4 (x), B

(4)
5 (x) and B

(4)
6 (x) (as shown in Fig. 1) whose values of c

(i)
j in Eq. (9) are given in

Table I. These six binary fucntions are chosen as examples giving different auto-correlation functions
and it is easy to get 〈B(4)

i 〉 = 1
2 using f∗(x) = 1, that is 〈C(0;B(4)

i )〉 = 1
4 (i = 1, 2, · · · , 6).

Then, we calculate the auto-correlation values (ε1, ε2, ε3) for B
(4)
i (x)(i = 1, 2, · · · , 6) by using

Eq. (15). The values (ε1, ε2, ε3) are shown in Table II. For example, for the binary function
B

(4)
4 (x) = Θ0(x) − Θ 5

16
(x) + Θ 1

2
(x) − Θ 11

16
(x), 〈C(l; B(4)

4 )〉 (l = 1, 2, 3) are obtained as

〈C(1;B(4)
4 )〉 =

1
2

∫ 1

0

{(−Θ 5
8
(x) + 〈Θ 5

8
〉) − (Θ 3

8
(x) − 〈Θ 3

8
〉)}(B(4)

4 (x) − 〈B(4)
4 〉)dx =

1
8
, (19)

〈C(2;B(4)
4 )〉 =

1
22

∫ 1

0

{(−Θ 1
4
(x) + 〈Θ 1

4
〉) − (Θ 3

4
(x) − 〈Θ 3

4
〉)}(B(4)

4 (x) − 〈B(4)
4 〉)dx =

1
16

, (20)

〈C(3;B(4)
4 )〉 =

1
23

∫ 1

0

{(−Θ 1
2
(x) + 〈Θ 1

2
〉) − (Θ 1

2
(x) − 〈Θ 1

2
〉)}(B(4)

4 (x) − 〈B(4)
4 〉)dx =

1
64

. (21)
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Fig. 1. Binary functions B
(4)
i (x) (i = 1, 2, · · · , 6).

We can get the auto-correlation functions for the other binary functions in the similar calculation
by using Eq. (15). Then, we get the normalized auto-correlation values (ε1, ε2, ε3) for all the six
binary functions as shown in Table II.

3. Proposed random bit generator and numerical experiments

Assume that we have a random bit generator (e.g. analog chaos circuit) generating an aperiodic
random bit sequence {Yn}∞n=0. To generate aperiodic random bit sequences with designed auto-
correlations, Yn is post-processed by an LFSR. Figure 2 shows the proposed post-processing scheme
based on a k -stage LFSR and a combinational logic circuit with 4 inputs (i.e. m = 4), where ⊕
denotes modulo-2 addition, hi ∈ {0, 1}. Since Yn is aperiodic, the output b

(i)
n is also aperiodic.

Note that the dynamics of the state of LFSRs approximates the Bernoulli map with finite bits as
shown below [9, 10]. A state of LFSRs, denoted by {ak−1(n), · · · , a1(n), a0(n)}, can be converted into
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Fig. 2. Proposed random bit generator.

Fig. 3. Examples of return maps of k-stage LFSRs.

Fig. 4. Auto-correlation functions of Yn before post-processing.

a real number xn ∈ [0, 1] by

xn = a0(n) · 2−1 + a1(n) · 2−2 + · · · + ak−1(n) · 2−k. (22)

Plotting (xn, xn+1), we can get a 1-D map (so-called a return map) as shown in Fig. 3, where (a)
k = 5 and (b) k = 10. From Fig. 3, we can confirm that the shapes of such return maps are similar
to the Bernoulli map defined by Eq. (7) and the precision increases as k increases [9, 10].

Then, the binary functions B
(4)
i (x)(i = 1, 2, · · · , 6) are applied for designing the combinational logic

functions with 4 inputs. Namely, we define six combinational logic functions by

F
(4)
i (a0a1a2a3) =

{
1 a0a1a2a3 ∈ Mi

0 otherwise,
(23)

where Mi (i = 1, 2, · · · , 6) are given by
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Fig. 5. Auto-correlation functions of {b(1)
n }N−1

n=0 after post-processing by F
(4)
1 .

M1 = {0010, 0011, 0101, 1000, 1010, 1011, 1100, 1111},
M2 = {0000, 0001, 0010, 0101, 1000, 1001, 1010, 1011},
M3 = {0000, 0010, 0011, 1000, 1001, 1010, 1011, 1110},
M4 = {0000, 0001, 0010, 0011, 0100, 1000, 1001, 1010},
M5 = {0001, 0011, 0100, 0101, 0111, 1100, 1101, 1111},
M6 = {0110, 0111, 1001, 1011, 1100, 1101, 1110, 1111},

which are based on B
(4)
i (x)(i = 1, 2, · · · , 6) in Fig. 1.

Now, we investigate the validity of the proposed post-processing by numerical experiments. The
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Fig. 6. Auto-correlation functions of {b(2)
n }N−1

n=0 after post-processing by F
(4)
2 .

Fig. 7. Auto-correlation functions of {b(3)
n }N−1

n=0 after post-processing by F
(4)
3 .

Fig. 8. Auto-correlation functions of {b(4)
n }N−1

n=0 after post-processing by F
(4)
4 .

numerical auto-correlation function of the output random bit sequences {b(i)
n }N−1

n=0 (i = 1, 2, · · · , 6) is
defined by

AN (l; b(i)
n ) =

1
N

N−1∑
n=0

(2b(i)
n − 1)(2b

(i)
n+l − 1), (24)

where we set N = 1, 000, 000 and the length (number of stages) of LFSRs is set to k = 4, 5, · · · , 10.
Each LFSR itself generates an M-sequence with period 2k − 1. Here, we assume Yn (before post-
processing) is generated by an analog chaos circuit or a physical random number generator, which
implies Yn has infinite period. But, in general, such aperiodic sequences have bad statistical properties,
that is, they are correlated. Thus, we also assume Yn has strong auto-correlation given by a normalized
auto-correlation function a−l (|a| > 1) as shown in Fig. 4, where (a) Random Sequence A is a
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Fig. 9. Auto-correlation functions of {b(5)
n }N−1

n=0 after post-processing by F
(4)
5 .

Fig. 10. Auto-correlation functions of {b(6)
n }N−1

n=0 after post-processing by F
(4)
6 .

negatively auto-correlated sequence (a = −1.1) and (b) Random Sequence B is a positively auto-
correlated sequence (a = 1.1). Such random sequences A and B are generated by using piecewise
linear chaotic maps given in [7].

Figure 5 shows the auto-correlation functions of random bit sequences after post-processing by
the LFSR with the combinational logic function F

(4)
1 . In the figures, the lines represent the tar-

get (theoretical) auto-correlation functions and the crosses represent the numerical auto-correlation
functions. According to the figures, if the length of LFSRs, k, is small, (e.g. k = 4), the numerical
auto-correlation values are quite different from the target auto-correlation values. If k is increased,
the difference between the numerical and target auto-correlation functions is getting small. If k is
sufficiently large, (e.g. k = 8, 9, 10), the difference converges to zero. As shown in Fig. 5, for the case
of k = 10, the numerical auto-correlation functions are almost the same as the target ones.

Similarly, Figs. 6–10 show the auto-correlation functions of random bit sequences after post-
processing by the logic functions F

(4)
i (i = 2, 3, · · · , 6) for the case of k = 4 and 10 respectively. By

analyzing the resulting figures, it has been shown that if k increases, each numerical auto-correlation
function is quite similar to the target auto-correlation function, which is independent of the statistical
properties of the original random bit sequence Yn.

Next, we investigate the convergence properties of auto-correlation functions of binary sequences
generated by the proposed post-processing with LFSRs. We evaluate the mean square error (MSE)
between AN (l; b(i)

n ) and Ĉ(l; B(4)
i ) defined by

MSE(i; k) =
1
L

L∑
l=1

(AN (l; b(i)
n ) − Ĉ(l; B(4)

i ))2, (25)

where we set L = 100. Here we use several auto-correlation parameter a (a = ±1.1, ±1.3, ±1.5,
±1.7, ±2.1, ±3, ±5, ±10) for generating Yn (Random Sequences A and B are generated by using
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Fig. 11. MSE(i; k) versus k for F
(4)
i (i = 1, 2, · · · , 6).

a = −1.1 and 1.1). We also use i.i.d. binary sequences generated by the logistic map. Figure 11
shows the relation between the MSE and k for several values of a (and i.i.d.). From Fig. 11, it has
been shown that the MSE converges to 0 as k increases and the convergence rate is slower for stronger
auto-correlation (e.g., a = ±1.1).

Finally, we investigate the necessary value of k for achieving sufficiently small error between the
numerical and target auto-correlation functions for each value of a. Table III shows the smallest value
of k achieving MSE(i; k) < 1 × 10−5 for each a. According to the table, larger k is necessary for
stronger auto-correlation and k = 10 is enough in this case (|a| > 1.1).
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Table III. Smallest value of k achieving MSE(i; k) < 1 × 10−5.

a -1.1 -1.3 -1.5 -1.7 -2.1 -3 -5 -10 i.i.d. 10 5 3 2.1 1.7 1.5 1.3 1.1

F
(4)
1 9 8 7 7 7 7 4 4 4 4 6 7 7 7 7 8 9

F
(4)
2 9 8 7 7 7 7 5 4 4 4 5 7 7 7 7 8 9

F
(4)
3 10 8 6 6 6 6 5 4 4 4 5 6 6 6 6 8 9

F
(4)
4 9 8 8 6 6 6 5 4 4 4 5 6 6 6 6 8 9

F
(4)
5 9 7 7 7 7 7 5 4 4 4 5 5 7 7 7 7 9

F
(4)
6 8 7 6 6 6 5 5 4 4 4 5 5 6 6 6 7 8

4. Conclusions
In this paper, we have given a generalization of the post-processing method based on k-stage LFSRs
and chaos theory for the Bernoulli map to generate aperiodic random bit sequences with prescribed
positive/negative auto-correlations. We have theoretically analyzed the auto-correlation functions
of chaotic binary sequences {B(m)

i (xn)}∞n=0 generated by the Bernoulli map. Using B
(4)
i (x) (i =

1, 2, · · · , 6), we have designed the combinational logic circuits with 4 inputs for the post-processing.
By numerical experiments, we have confirmed that if k is sufficiently large, random bit sequences with
prescribed positive/negative auto-correlations can be obtained by the post-processing. In general, m-
input/1-output combinational logic circuits can be designed and applied to the post-processing for
m ≤ k.
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